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Global persistence exponent of the two-dimensional Blume-Capel model
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The global persistence exponefy is calculated for the two-dimensional Blume-Capel model following a
guench to the critical point from both disordered states and such with small initial magnetizations. Estimates
are obtained for the nonequilibrium critical dynamics on the critical line and at the tricritical point. Ising-like
universality is observed along the critical line and a different valye 1.080(4) is found at the tricritical
point.
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Recent advances in nonequilibrium physics have enlargedompatible with the heat-battHB) dynamics for the two-
our understanding of critical phenomena. As shown by Jandimensional Ising model#=0.191(1)[4,14], z=2.156(2)
sseret al.[1] and Husd 2], universality and scaling behavior [15]) on the critical line.
are already present in systems since the early stages of their Under the same nonequilibrium conditions, a second criti-
relaxation processes after quenching from high temperaturesal exponent has been presented in the literaflifd; the
to the critical one. This evolution is governed by a new in-global persistence expone#y. It is related to the probabil-
dependent exponert Systems characterized by a noncon-ity P(t) that the global order parameter has not changed sign
served order parameter, modein the terminology of Hal-  up to timet after a quench t@,, P(t)~t~%. This exponent
perinet al.[3], are described by a scaling function soon afterhas emerged from the concept of the local persistence phe-
a microscopic time scalg,;.. Its general form for th&kth ~ nomena in coarsening dynamicsTat 0 [17—-22. As argued
moment of the magnetizatiofe.g., in a ferromagngtreads by Majumdaret al.[16], if the dynamics of the global order

as parameter is described by a Markovian procegsis not a
new independent exponent and it can be related to other criti-
M®(t,7,L,mg)=b "MW (b=, b7 b~ 1L, b%om). cal exponents,
D
Ogz=N—d+1—7/2. (2

Here, b is an arbitrary spatial scaling factdr,is the time
evolution, and r is the reduced temperature;=(T  Here,\ is the nonequilibrium exponent of the autocorrela-
—T¢)/T.. As usual, the exponent8 and v are the well- tion function[1,2]
known static exponents, whereass the dynamic one. Equa-
tion (1) depends on the initial magnetizatiom, and gives 1
origin to the new exponen{,, scaling dimension of the ini- A(t)= —d< 2 Si(O)S(t)> ~t M2, 3
tial magnetization, related t6 by xo= 6z+ B/ v. L :
The nonequilibrium short-time exponemt can be ob- S )
tained at the critical temperature from the scaling form of theVhich is related to the short-time exponent=d-— 6z.
first momen{1,4,5], M (t,mg) ~mot?. Usually, this exponent 1 herefore, Eq(2) can be rewritten as
assumes a positive value corresponding to a critical initial
slip, which is related to the anomalous behavior of the mag- 0.7= — 67+ 9_ E )
netization when the system is quenchedTia Numerical 9 2 v
works indicate negative values far at the tricritical point
[6] of the S=1 Blume-Capel moddl7—9] in two dimensions However, the time evolution of the order parameter is, in
(2D) as well as for the Baxter-W{i10], Ising model with  general, a non-Markovian process afilturns out to be a
three-spin interactionsl 1] and for the four-state Potts model new independent critical exponent describing the stochastic
[12]. The indication of a negative value for this exponentdynamic process toward the equilibrium.
was theoretically deduced by Janssen and OefdiBpfrom Contrary to the local persistence, the global persistence
a study of nonequilibrium relaxation at a tricritical point. has been less studied. Results have only been reported for the
Numerical simulations of th&=1 Blume-Capel model6]  n—o limit of the O(n) model[ §,=(d—2)/4 for 2<d<4
present for the dynamical exponents the valués or 64=1/2 for d>4] and to ordere=4—d neard=4 [ 6,
—0.53(2) andz=2.21(2) at the tricritical point and values =1/2—e(n+2)/(4n+32)+0(€?)], for d=1 Ising model
(64=1/4) [16], andd=2 Ising model[16,23,24, as shown
in Table | and more recenty25] (6,=0.28) from the block
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TABLE I. The global persistence exponefy for the 2D Ising -1.0 T T T T T T T
model with random and with prefixed small initial magnetization
Mo 121 k. T/J=16950 ]
Reference Random  m,=0.0010  my=0.0005 -144 D=0 1
[24] 0.2335) 0.2375) 0.2383) S 161 1
[23] 0.22510) ~ 1 T,
[16] 0.2339) g8y Ty 1
2.0 i
°1 m, =0.005
for the O(n) model, it has been showi26] that the scaling 22 —
relation (2) for Markovian process is violated at the order 25 30 35 40 45 50 55 60 65
of €. Int

In this paper, we investigate the universality aspects of the , o
global persistence exponent for the Blume-Capel model. This F'CG: 1. Persistence probabiliy(t) for the 2D Blume-Capel
exponent is obtained by the straight application of the powef2de! forL =80 at a critical point with the sharp preparation of the
law behaviorP(t)~t~ % and by means of time series data Initial magnetizatiorm.

collapse. This study is also performed under different m't'alr]umerically calculated from the cumulative distribution

conditions: random choices of all spins and sharp prepar ; T
tions of samples with defined and nonzero magnetizationouringﬁtr:OSpstuoC[;r;Z?t the total magnetization does not cross the

mg [24].

The Blume-Cap€|l7] (BC) model is a spin-1 model which t
has been used to describe the behavioftéé-*He mixtures P(t)=1— 2 p(t'). (6)
along the\ line and near the critical mixing point. Apart t=1

from its practical interest, the BC model has intrinsic interest
since it is the simplest generalization of the Ising model ( The spins{S;} are updated by the heat-bath algorithm and
=1/2) exhibiting a rich phase diagram with first- and our statistics rely onNg=5 independent bins witiNg
second-order transition lines and a tricritical point. The=40000 samples for up to 1000 Monte Carlo sweeps and
Hamiltonian of the two-dimensional model is lattice sizeL =80. We quote estimates for the time intervals
[t;,t;] with the highest values of goodness of(it[28] for
the linear regression obtained at every tenth measurement.
H= —JZ SiSJ-+D2 S (5) Table Il lists the points on the second-order critical line
{i.j) =1 and the tricritical point where we have performed our simu-
lations. This table presents estimates &rin function of
where (i,j) indicates nearest neighbors &7 lattices and different magnetizationsy, to explore the effect of the initial
Si={—1,0,1}. The parameted is the exchange coupling configurations on the behavior Bft). Linear extrapolations
constant and is the crystal field. We remark that along the for my— 0 are presented in the last column. Here we, follow
critical line, this model presents a critical behavior similar tothe sharp preparation technique to set the vahye Our
the Ising model. However, exactly at the tricritical point the typical time intervals for my=0.0050 correspond to
exponents change abruptly. In R¢R7] finite-size scaling [100,50Q (critical pointg and [40,40Q (tricritical point).
combined with conformal invariance permitted to observe &Different time intervals with accepted values Qr present
smooth change between Ising-like and tricritical behaviorcompatible results within our error estimates.
Ising-like behavior is reached only whén—, leading to Figures 1 and 2 illustrate, respectively, the decay of per-
the exact values of the Ising model critical exponents. sistence probability for the specific critical poibt/J=0,
In order to evaluate the persistence probabift), we  kgT/J=1.6950, and for the tricritical point.
definep(t) as the fraction of samples that change their sig- Our simulations of the BC model on the critical line re-
nals for the first time at the instahtOur probabilityP(t) is  produce(see Table Il the estimates obtained by Schulke and

TABLE Il. The global persistence expone# from the power law behavior for the 2D Blume-Capel model for different initial
magnetizationsny. The last column contains our linear extrapolatiomg=0.

D/J kgT/J my=0.0050 my=0.0025 my=0.0005 Extrapolated value
0 1.6950 0.21&®) 0.2332) 0.23713) 0.2414)
-3 2.0855 0.22@) 0.2331) 0.2342) 0.2384)
-5 2.1855 0.22@) 0.2321) 0.2351) 0.23712)
Tricritical point
1.9655 0.610 1.053) 1.0724) 1.0763) 1.0804)
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FIG. 2. Persistence probability(t) for the 2D Blume-Capel
model forL =80 at the tricritical point with the sharp preparation o
the initial magnetizatiomm,,.

Zheng[24] for the 2D Ising model withmy=0.0005: 6,
=0.238(3)(with the HB dynamicsand 6,=0.236(3) (Me-

tropolis algorithm. On the other hand, our simulations

present the largest deviatigoompared with the Ising model
exponenk for the largest initial magnetizatiomy=0.0050,
but the expected universality is recoverednas— 0. It be-
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FIG. 3. Collapse of persistence probability at the tricritical point

0.001

¢ D/J=1.9655kgT/J=0.610.

W(t,L)—W(b%t,bL) |?
|W(t,L)|+|W(b%,bL)|

x%(0y)= Z 9

by interpolatingW to the time value®?t.
This method is applied to the critical poirid/J=0,

comes clear the importance of the initial configurations inksT/J=1.6950, and to the tricritical one. We performed

measuring the persistence exponent.

simulations with lattice sizels=10,20,40, and 80 and initial

At the tricritical point, we observe a faster decay of thedisordered states to study the finite-size dependend, of

persistence probabilitygy=1.080(4)], characterizing a dif-

Our simulations also rely ofNg=40000 samples andll,

ferent persistence behavior. We repeat our simulations for © bins. The collapse obtained from our largest pairs of

another critical poinf29] D/J=1.95, kgT/J=0.650, closer

lattices (L4,L,)=(40,80) is displayed in Fig. 3 for the tric-

to the tricritical one in order to observe the transition from/itical point. A similar figure(not shown is also obtained for

the Ising-like value #3;~0.24 to the tricritical valued,

the critical one. Results for the persistence exponent are pre-

~1.08. In this case, the persistence probability can be stifénted in Table IIl with the input values=2.106 andz
fitted by a power law but we have to restrict our analysis to=2-215, respectively, for the critical and tricritical po[].
shorter-time intervals in order to obtain acceptable values foi€re, we can observe a good agreement between both meth-

the goodness of fit. We obtaify,=0.345(5) in the interval
[100,30Q.

The initial magnetization dependencePRft) can be cast
in the following finite-size scaling relatiof16]

P(t)=t"%f(t/L?) =L %f(t/L?), (7)

which renders a different method to obtain the exporgnt
from lattice sizesL, and L, [16]. For this end, we define
W(t,L)=L%?P(t), which turns out to be a function ofLZ
Therefore, if we fix the dynamic exponentthe exponend,
can be obtained by collapsing the time seri&%t,,L,)
=f(t,/L5) ontoW(ty,Lq)=f(t,/L7) as follows. Under res-
caling, withb=L,/L4, (L,>L,), we obtain

W(t,,L,)=W(b%,,bL,y), (8)

and the best estimate f@y, corresponds to the minimization
of

ods. However, we remark that the collapse method gives less
precise results.

Now, we return to Eq(4) to analyze the Markovian as-
pects of the time evolution of the magnetization. We verify
that our numerical precision for both the expond®iss and
04, evaluated on the critical line and at the tricritical point,
allows us to detect the non-Markovian behavior. Thus, these
results substantiate the independence of global persistence
and short-time exponents, characteristic of a non-Markovian
dynamic evolution of the magnetization.

In summary, we have studied the effects of the initial

TABLE lIl. The global persistence exponefy for the best data
collapse for the 2D Blume-Capel model with initial magnetization
m0=0.

Critical point Tricritical point
(D/J=0, kgT/J=1.6950) O/J=1.9655kgT/J=0.610)
Ly L, 2 Og
10 20 0.2547) 0.892)
20 40 0.262) 1.082)
40 80 0.242) 1.062)
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magnetization orP(t) and evaluated the global persistenceis also exhibitted at the tricritical point, presenting a faster
exponent of the Blume-Capel model from different methodsdecay when compared with the Ising model exponent.

(linear extrapolatiormy— 0 and collapse The universality

and independence of this dynamic exponent is explicitly

shown for the BC model along the critical line. In addition,
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