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Global persistence exponent of the two-dimensional Blume-Capel model
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The global persistence exponentug is calculated for the two-dimensional Blume-Capel model following a
quench to the critical point from both disordered states and such with small initial magnetizations. Estimates
are obtained for the nonequilibrium critical dynamics on the critical line and at the tricritical point. Ising-like
universality is observed along the critical line and a different valueug51.080(4) is found at the tricritical
point.
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Recent advances in nonequilibrium physics have enlar
our understanding of critical phenomena. As shown by J
ssenet al. @1# and Huse@2#, universality and scaling behavio
are already present in systems since the early stages of
relaxation processes after quenching from high temperat
to the critical one. This evolution is governed by a new
dependent exponentu. Systems characterized by a nonco
served order parameter, modelA in the terminology of Hal-
perinet al. @3#, are described by a scaling function soon af
a microscopic time scaletmic . Its general form for thekth
moment of the magnetization~e.g., in a ferromagnet! reads
as

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!.
~1!

Here, b is an arbitrary spatial scaling factor,t is the time
evolution, and t is the reduced temperature,t5(T
2Tc)/Tc . As usual, the exponentsb and n are the well-
known static exponents, whereasz is the dynamic one. Equa
tion ~1! depends on the initial magnetizationm0 and gives
origin to the new exponentx0, scaling dimension of the ini-
tial magnetization, related tou by x05uz1b/n.

The nonequilibrium short-time exponentu can be ob-
tained at the critical temperature from the scaling form of
first moment@1,4,5#, M (t,m0);m0tu. Usually, this exponen
assumes a positive value corresponding to a critical in
slip, which is related to the anomalous behavior of the m
netization when the system is quenched toTc . Numerical
works indicate negative values foru at the tricritical point
@6# of theS51 Blume-Capel model@7–9# in two dimensions
(2D) as well as for the Baxter-Wu@10#, Ising model with
three-spin interactions@11# and for the four-state Potts mod
@12#. The indication of a negative value for this expone
was theoretically deduced by Janssen and Oerding@13# from
a study of nonequilibrium relaxation at a tricritical poin
Numerical simulations of theS51 Blume-Capel model@6#
present for the dynamical exponents the valuesu5
20.53(2) andz52.21(2) at the tricritical point and value
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compatible with the heat-bath~HB! dynamics for the two-
dimensional Ising model„u50.191(1) @4,14#, z52.156(2)
@15#… on the critical line.

Under the same nonequilibrium conditions, a second c
cal exponent has been presented in the literature@16#; the
global persistence exponentug . It is related to the probabil-
ity P(t) that the global order parameter has not changed s
up to timet after a quench toTc , P(t);t2ug. This exponent
has emerged from the concept of the local persistence
nomena in coarsening dynamics atT50 @17–22#. As argued
by Majumdaret al. @16#, if the dynamics of the global orde
parameter is described by a Markovian process,ug is not a
new independent exponent and it can be related to other c
cal exponents,

ugz5l2d112h/2. ~2!

Here, l is the nonequilibrium exponent of the autocorre
tion function @1,2#

A~ t !5
1

Ld K (i
Si~0!Si~ t !L ;t2l/z, ~3!

which is related to the short-time exponent,l5d2uz.
Therefore, Eq.~2! can be rewritten as

ugz52uz1
d

2
2

b

n
. ~4!

However, the time evolution of the order parameter is,
general, a non-Markovian process andug turns out to be a
new independent critical exponent describing the stocha
dynamic process toward the equilibrium.

Contrary to the local persistence, the global persiste
has been less studied. Results have only been reported fo
n→` limit of the O(n) model @ug5(d22)/4 for 2,d,4
or ug51/2 for d.4] and to ordere542d neard54 @ug
51/22e(n12)/(4n132)1O(e2)#, for d51 Ising model
(ug51/4) @16#, andd52 Ising model@16,23,24#, as shown
in Table I and more recently@25# (ug50.28) from the block
persistence probability. As remarked in Ref.@16#, relation~2!
is satisfied forn5` limit of the O(n) model, to the first
order ine542d, and also ford51 Ising model. However,
©2003 The American Physical Society02-1
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for the O(n) model, it has been shown@26# that the scaling
relation ~2! for Markovian process is violated at the ord
of e2.

In this paper, we investigate the universality aspects of
global persistence exponent for the Blume-Capel model. T
exponent is obtained by the straight application of the po
law behaviorP(t);t2ug and by means of time series da
collapse. This study is also performed under different ini
conditions: random choices of all spins and sharp prep
tions of samples with defined and nonzero magnetizati
m0 @24#.

The Blume-Capel@7# ~BC! model is a spin-1 model which
has been used to describe the behavior of3He-4He mixtures
along thel line and near the critical mixing point. Apar
from its practical interest, the BC model has intrinsic inter
since it is the simplest generalization of the Ising models
51/2) exhibiting a rich phase diagram with first- an
second-order transition lines and a tricritical point. T
Hamiltonian of the two-dimensional model is

H52J(
^ i , j &

SiSj1D(
i 51

Si
2 , ~5!

where ^ i , j & indicates nearest neighbors onL2 lattices and
Si5$21,0,1%. The parameterJ is the exchange coupling
constant andD is the crystal field. We remark that along th
critical line, this model presents a critical behavior similar
the Ising model. However, exactly at the tricritical point t
exponents change abruptly. In Ref.@27# finite-size scaling
combined with conformal invariance permitted to observ
smooth change between Ising-like and tricritical behav
Ising-like behavior is reached only whenL→`, leading to
the exact values of the Ising model critical exponents.

In order to evaluate the persistence probabilityP(t), we
definer(t) as the fraction of samples that change their s
nals for the first time at the instantt. Our probabilityP(t) is

TABLE I. The global persistence exponentug for the 2D Ising
model with random and with prefixed small initial magnetizati
m0.

Reference Random m050.0010 m050.0005

@24# 0.233~5! 0.237~5! 0.238~3!

@23# 0.225~10!

@16# 0.233~9!
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numerically calculated from the cumulative distributio
function such that the total magnetization does not cross
origin up to timet,

P~ t !512 (
t851

t

r~ t8!. ~6!

The spins$Si% are updated by the heat-bath algorithm a
our statistics rely onNB55 independent bins withNS
540 000 samples fort up to 1000 Monte Carlo sweeps an
lattice sizeL580. We quote estimates for the time interva
@ t i ,t f # with the highest values of goodness of fitQ @28# for
the linear regression obtained at every tenth measureme

Table II lists the points on the second-order critical li
and the tricritical point where we have performed our sim
lations. This table presents estimates forug in function of
different magnetizationsm0 to explore the effect of the initia
configurations on the behavior ofP(t). Linear extrapolations
for m0→0 are presented in the last column. Here we, follo
the sharp preparation technique to set the valuem0. Our
typical time intervals for m050.0050 correspond to
@100,500# ~critical points! and @40,400# ~tricritical point!.
Different time intervals with accepted values forQ, present
compatible results within our error estimates.

Figures 1 and 2 illustrate, respectively, the decay of p
sistence probability for the specific critical pointD/J50,
kBT/J51.6950, and for the tricritical point.

Our simulations of the BC model on the critical line r
produce~see Table II! the estimates obtained by Schulke a

FIG. 1. Persistence probabilityP(t) for the 2D Blume-Capel
model forL580 at a critical point with the sharp preparation of th
initial magnetizationm0.
ial
TABLE II. The global persistence exponentug from the power law behavior for the 2D Blume-Capel model for different init
magnetizationsm0. The last column contains our linear extrapolation tom050.

D/J kBT/J m050.0050 m050.0025 m050.0005 Extrapolated value

0 1.6950 0.219~3! 0.233~2! 0.237~3! 0.241~4!

23 2.0855 0.223~2! 0.233~1! 0.234~2! 0.238~4!

25 2.1855 0.223~2! 0.232~1! 0.235~1! 0.237~2!

Tricritical point
1.9655 0.610 1.054~3! 1.072~4! 1.076~3! 1.080~4!
2-2
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Zheng @24# for the 2D Ising model withm050.0005: ug
50.238(3)~with the HB dynamics! andug50.236(3)~Me-
tropolis algorithm!. On the other hand, our simulation
present the largest deviation~compared with the Ising mode
exponent! for the largest initial magnetizationm050.0050,
but the expected universality is recovered asm0→0. It be-
comes clear the importance of the initial configurations
measuring the persistence exponent.

At the tricritical point, we observe a faster decay of t
persistence probability@ug51.080(4)#, characterizing a dif-
ferent persistence behavior. We repeat our simulations
another critical point@29# D/J51.95, kBT/J50.650, closer
to the tricritical one in order to observe the transition fro
the Ising-like valueug;0.24 to the tricritical valueug
;1.08. In this case, the persistence probability can be
fitted by a power law but we have to restrict our analysis
shorter-time intervals in order to obtain acceptable values
the goodness of fit. We obtainug50.345(5) in the interval
@100,300#.

The initial magnetization dependence ofP(t) can be cast
in the following finite-size scaling relation@16#

P~ t !5t2ugf ~ t/Lz!5L2ugzf̃ ~ t/Lz!, ~7!

which renders a different method to obtain the exponentug
from lattice sizesL1 and L2 @16#. For this end, we define
W(t,L)5LugzP(t), which turns out to be a function oft/Lz.
Therefore, if we fix the dynamic exponentz, the exponentug
can be obtained by collapsing the time seriesW(t2 ,L2)
5 f (t2 /L2

z) ontoW(t1 ,L1)5 f (t1 /L1
z) as follows. Under res-

caling, withb5L2 /L1 , (L2.L1), we obtain

W~ t2 ,L2!5W̃~bzt1 ,bL1!, ~8!

and the best estimate forug corresponds to the minimizatio
of

FIG. 2. Persistence probabilityP(t) for the 2D Blume-Capel
model forL580 at the tricritical point with the sharp preparation
the initial magnetizationm0.
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or

ill
o
r

x2~ug!5(
t

S W~ t,L !2W̃~bzt,bL!

uW~ t,L !u1uW̃~bzt,bL!u
D 2

~9!

by interpolatingW̃ to the time valuesbzt.
This method is applied to the critical pointD/J50,

kBT/J51.6950, and to the tricritical one. We performe
simulations with lattice sizesL510,20,40, and 80 and initia
disordered states to study the finite-size dependence ofug .
Our simulations also rely onNs540 000 samples andNb
55 bins. The collapse obtained from our largest pairs
lattices (L1 ,L2)5(40,80) is displayed in Fig. 3 for the tric
ritical point. A similar figure~not shown! is also obtained for
the critical one. Results for the persistence exponent are
sented in Table III with the input valuesz52.106 andz
52.215, respectively, for the critical and tricritical point@6#.
Here, we can observe a good agreement between both m
ods. However, we remark that the collapse method gives
precise results.

Now, we return to Eq.~4! to analyze the Markovian as
pects of the time evolution of the magnetization. We ver
that our numerical precision for both the exponents@6# u and
ug , evaluated on the critical line and at the tricritical poin
allows us to detect the non-Markovian behavior. Thus, th
results substantiate the independence of global persist
and short-time exponents, characteristic of a non-Markov
dynamic evolution of the magnetization.

In summary, we have studied the effects of the init

FIG. 3. Collapse of persistence probability at the tricritical po
D/J51.9655,kBT/J50.610.

TABLE III. The global persistence exponentug for the best data
collapse for the 2D Blume-Capel model with initial magnetizati
m050.

Critical point Tricritical point
(D/J50, kBT/J51.6950) (D/J51.9655,kBT/J50.610)

L1 L2 ug ug

10 20 0.254~7! 0.88~2!

20 40 0.26~2! 1.08~2!

40 80 0.24~2! 1.06~2!
2-3
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magnetization onP(t) and evaluated the global persisten
exponent of the Blume-Capel model from different metho
~linear extrapolationm0→0 and collapse!. The universality
and independence of this dynamic exponent is explic
shown for the BC model along the critical line. In additio
the power law time dependence of the persistence probab
. B

l.

l

05710
s
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is also exhibitted at the tricritical point, presenting a fas
decay when compared with the Ising model exponent.
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